Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bolchini, Cristiana; Verbauwhede, Ingrid; Vatajelu, Ioana (Ed.)Algebraic reasoning has proven to be one of the most effective approaches for verifying gate-level integer multipliers, but it struggles with certain components, necessitating the complementary use of SAT solvers. For this reason validation certificates require proofs in two different formats. Approaches to unify the certificates are not scalable, meaning that the validation results can only be trusted up to the correctness of compositional reasoning. We show in this paper that using dual variables in the algebraic encoding, together with a novel tail substitution and carry rewriting method, removes the need for SAT solvers in the verification flow and yields a single, uniform proof certificate.more » « less
-
Proof systems for propositional logic provide the basis for decision procedures that determine the satisfiability status of logical formulas. While the well-known proof system of extended resolution—introduced by Tseitin in the sixties—allows for the compact representation of proofs, modern SAT solvers (i.e., tools for deciding propositional logic) are based on different proof systems that capture practical solving techniques in an elegant way. The most popular of these proof systems is likely DRAT, which is considered the de-facto standard in SAT solving. Moreover, just recently, the proof system DPR has been proposed as a generalization of DRAT that allows for short proofs without the need of new variables. Since every extended-resolution proof can be regarded as a DRAT proof and since every DRAT proof is also a DPR proof, it was clear that both DRAT and DPR generalize extended resolution. In this paper, we show that—from the viewpoint of proof complexity—these two systems are no stronger than extended resolution. We do so by showing that (1) extended resolution polynomially simulates DRAT and (2) DRAT polynomially simulates DPR. We implemented our simulations as proof-transformation tools and evaluated them to observe their behavior in practice. Finally, as a side note, we show how Kullmann’s proof system based on blocked clauses (another generalization of extended resolution) is related to the other systems.more » « less
-
Mutilated chessboard problems have been called a “tough nut to crack” for automated reasoning. They are, for instance, hard for resolution, resulting in exponential runtime of current SAT solvers. Although there exists a well-known short argument for solving mutilated chessboard problems, this argument is based on an abstraction that is challenging to discover by automated-reasoning techniques. In this paper, we present another short argument that is much easier to compute and that can be expressed within the recent (clausal) PR proof system for propositional logic. We construct short clausal proofs of mutilated chessboard problems using this new argument and validate them using a formally-verified proof checker.more » « less
-
Satisfaction-Driven Clause Learning (SDCL) is a recent SAT solving paradigm that aggressively trims the search space of possible truth assignments. To determine if the SAT solver is currently exploring a dispensable part of the search space, SDCL uses the so-called positive reduct of a formula: The positive reduct is an easily solvable propositional formula that is satisfiable if the current assignment of the solver can be safely pruned from the search space. In this paper, we present two novel variants of the positive reduct that allow for even more aggressive pruning. Using one of these variants allows SDCL to solve harder problems, in particular the well-known Tseitin formulas and mutilated chessboard problems. For the first time, we are able to generate and automatically check clausal proofs for large instances of these problems.more » « less
-
We introduce proof systems for propositional logic that admit short proofs of hard formulas as well as the succinct expression of most techniques used by modern SAT solvers. Our proof systems allow the derivation of clauses that are not necessarily implied, but which are redundant in the sense that their addition preserves satisfiability. To guarantee that these added clauses are redundant, we consider various efficiently decidable redundancy criteria which we obtain by first characterizing clause redundancy in terms of a semantic implication relationship and then restricting this relationship so that it becomes decidable in polynomial time. As the restricted implication relation is based on unit propagation---a core technique of SAT solvers---it allows efficient proof checking too. The resulting proof systems are surprisingly strong, even without the introduction of new variables---a key feature of short proofs presented in the proof-complexity literature. We demonstrate the strength of our proof systems on the famous pigeon hole formulas by providing short clausal proofs without new variables.more » « less
An official website of the United States government

Full Text Available